New 110 GHz Oscilloscope – UXR Q&A #35

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

 

Some of the questions & comments

S K on YouTube: How long does it take to engineer something like this? With custom ASICs all over the place and what not…

Glitch on YouTube: Can you make a budget version of it for $99?

Steve Sousa on YouTube: But how do you test the test instrument?? It’s already so massively difficult to make this, how can you measure and qualify it’s gain, linearity etc?

TechNiqueBeatz on YouTube: About halfway through the video now.. what would the practical application(s) of an oscilloscope like this be?

Alberto Vaudagna on YouTube: Do you know what happen to the data after the dsp? It go to the CPU motherboard and processed by the CPU or the data is overlayed on the screen and the gui is runner’s by the CPU?

How does a piece of equipment like that get delivered? I just don’t think UPS or Fedex is going to cut it for million+ dollar prototype. It would be nice to see some higher magnification views of the front end.

Ulrich Frank:mNice sturdy-looking handles at the side of the instrument – to hold on to and keep you steady when you hear the price…

SAI Peregrinus: That price! It costs less than half the price of a condo in Brooklyn, NY! (Search on Zillow, sort by price high to low. Pg 20 has a few for $2.7M, several of which are 1 bedroom…)

RoGeorgeRoGeorge: Wow, speechless!

R Bhalakiya: THIS IS ALL VOODOO MAGIC

Maic Salazar Diagnostics: This is majestic!!

Sean Bosse: Holy poop. Bet it was hard keeping this quiet until the release.

jonka1: Looking at the front end it looks as if the clock signal paths are of different lengths. How is phase dealt with? Is it in this module or later in software?

cims: The Bugatti Veyron of scopes with a price to match, lol

One scope to rule them all…wow! Keyesight drops the proverbial mic with this one

Mike Oliver: That is a truly beautiful piece of equipment. It is more of a piece of art work than any other equipment I have ever seen.

Gyro on EEVBlog: It’s certainly a step change in just how bad a bad day at the office could really get!
TiN: I have another question, regarding the input. Are there any scopes that have waveguide input port, instead of very pricey precision 1.0mm/etc connectors?
Or in this target scope field, that’s not important as much, since owner would connect the input cable and never disconnect? Don’t see those to last many cable swaps in field, even 2.4mm is quite fragile.

User on EEVBlog: According to the specs, It looks like the 2 channel version he looked at “only” requires 1370 VA and can run off 120V.  The 4 channel version only works off 200-240V

The really interesting question: how do they calibrate that calibration probe.
They have to characterize the imperfections in it’s output to a significantly better accuracy than this scope can measure.  Unless there’s something new under the sun in calibration methodology?

Mikes Electric Stuff‏ @mikelectricstuf: Can I get it in beige?

Yaghiyah‏ @yaghiyah: Does it support Zone Triggering?

User on Twitter:

It’ll be a couple paychecks before I’m in the market, but I’d really be interested in some detail on the probes and signal acquisition techniques. Are folks just dropping a coax connector on the PCB as a test point? The test setup alone has to be a science in itself.

I’d also be interested in knowing if the visiting aliens that you guys mugged to get this scope design are alive and being well cared for.

Hi Daniel, just out of curiosity and within any limits of NDAs, can you go into how the design process goes for one of these bleeding-edge instruments? Mostly curious how much of the physical design, like the channels in the hybrid, are designed by a human versus designed parametrically and synthesized

What is Quantum Computing?- #15

Learn about the basics of quantum computing and quantum computers from Dr. Lee Barford. We discuss Schrodinger’s cat and more!

Hosted by Daniel Bogdanoff and Mike Hoffman, EEs Talk Tech is a twice-monthlyelectrical engineering podcast discussing tech trends and industry news from an electrical engineer’s perspective.

What is a quantum computer and what is quantum computing? In this week’s episode, Daniel Bogdanoff and Mike Hoffman are joined by quantum computing expert Lee Barford.

Video Version (YouTube):

Audio Only:

0:45 Intro

Lee Barford helps to guide Keysight into the quantum computing business + enables the quantum computing experts at Keysight

 

2:00 The importance of quantum computing

Clock rates in all types of digital processors stopped going up in 2006 due to heating limits

The processor manufacturers realized the need for more parallelism.

Today, Lee helps engineers at Keysight take advantage of this parallelism.

Graphics processors can be used as vector and matrix machines

Bitcoin utilizes this method.

 

6:00 The implications of advancements in quantum computing

Today, there are parts being made with feature size of the digital transistor that are 10, maybe 7 nanometers (depending on who you believe)

So we are heading below 5 nanometers, and there aren’t many unit cells of silicon left at that point. (a unit cell of silicon is 0.5 nanometer)

The uncertainty principle comes into play since there are few enough atoms where quantum mechanical effects will disturb the electronics.

There are many concerns including a superposition of states (Schrodinger’s cat) and low error tolerance.

 

10:20 Is Moore’s law going to fail? 

Quantum computing is one way of moving the computer industry past this barrier

Taking advantage of quantum mechanical effects, engineering with them, to build a new kind of computers that for certain problems, promise to do better than what we currently do.

 

15:20 Questions for future episodes:

What sort of technology goes into a quantum computer?

What’s the current state of experimentation?

What are some of the motivations for funding quantum computing research?

How is Keysight involved in this industry?

What problems is quantum computing aiming to solve?

 

17:30 Using quantum effects to our advantage

Quantum computers likely be used in consumer devices because there has to be a very low temperature and/or a vacuum.

18:00

A quantum computer’s fundamental storage unit is a qubit (quantum bit).  A quantum bit (qubit) can be either 1 or 0 with some finite probability

19:00
A quantum register can store multiple qubits, and when read, have a probability of being either of these numbers. A quantum register can store more than one state at a time, but only one value can be read from the quantum register.

21:00 How does one get a useful value out of a quantum register? You do as much of the computation before reading the state and then read the quantum computers quantum register.

This works because the quantum computer’s either has such a high probability to be correct that you don’t need to verify it, or it’s simple to double check if the answer is correct.

21:00 How do you get the desired value out of a quantum register? You do as much of the computation ahead of time and then read the quantum computers quantum register.

22:30 Quantum computers can factor very large numbers (breaking RSA in cryptography)

 

 

 

 

 

 

How to Price Your Electronics Hardware Project – #14

Pricing a new hardware product in a global economy with regional pricing, psychological factors, and the challenges of pricing in white space. This week’s guest is Brig Asay. Hosted by Daniel Bogdanoff and Mike Hoffman, EEs Talk Tech is a twice-monthly electrical engineering podcast discussing tech trends and industry news from an electrical engineer’s perspective.

Daniel Bogdanoff and Mike Hoffman sit down with Brig Asay to talk about how to price a hardware project. Listen in as they discuss the complexities of pricing a new hardware product in a global economy.

Follow Brig Asay on Yelp @baasay.

Video Version (YouTube):

Audio Only:

0:00 Intro

How should you price hardware?

1:45

Tell us in the comments what you think our green screen should be!

2:00

Economics 101: Supply & Demand

This is how we generally set prices for hardware

2:40

Top down pricing takes into account your cost of manufacturing.

But if you price based on production costs, you’re going to fail in your pricing.

It’s all about what consumers are willing to pay.

4:00

Pharmaceutical companies are the example of bad pricing schemes. They justify high prices based on high R&D costs.

But the reality is that consumers don’t care about R&D costs. They care about how bad they need the product, and this will determine how much they are willing to pay.

4:30

Someone on EEVblog hacked a 3000T, reverse engineering it to make it a 1 GHz scope.

 

5:30

The newer the idea, the harder it is to price because there’s no real market value.

Talking to potential customers is a good way to start pricing in white space.

6:45

Marketing 101: Who are your customers?

Determining who you are trying to sell to and talking with them can help with pricing.

Competitor pricing is a good baseline, but then you often get into value-based pricing.

7:50

Spreadsheets are the killer of pricing. They compete with your gut feeling.

$10K per GHz of bandwidth is a standard in oscilloscope pricing, but it doesn’t always apply. When we came out with the Infiniium Z-Series, a 63 GHz scope, we knew the market couldn’t support a $630K price.

9:00

Price/volume curve = Supply and demand chart

10:50

Different regions have different pricing expectations.

Currency, cultural expectations, and import taxes all come into play when considering regional pricing.

Should a small company even worry about regional pricing?

16:40

You need to be willing to adjust pricing.

Dynamics of the market and the value of your product can change over time.

If you’re not selling anything, you need to adjust your price.

Priced too low and people may have the perception that you’re selling a low-quality product.

19:20

Pricing too low may also inadvertently shrink your market size.

Overly undercutting your competitor may hurt you in the long-run.

23:15

Does the psychological side to pricing always apply?

What’s the stigma around prices ending in a 9 or 8?

25:00

Stupid Questions with Mike:

What is your favorite price and why?

What is your favorite currency and why?

27:40

Tell us about your software or hardware project in the comments!

 

 

 

Copper vs. Fiber Optic Cable and Optical Communication Techniques – #11

Stefan Loeffler discusses the latest optical communication techniques
and advances in the industry as well as the use of fiber optic cable in electronics and long-range telecommunication networks. Hosted by Daniel Bogdanoff and Mike Hoffman, EEs Talk Tech is a twice-monthly engineering podcast discussing tech trends and industry news from an electrical engineer’s perspective.

Mike Hoffman and Daniel Bogdanoff continue their discussion with Stefan Loeffler about optical communication. In the first episode, we looked at “what is optical communication?” and “how does optical communication work?” This week we dig deeper into some of the latest optical communication techniques and advances in the industry as well as the use of fiber optic cable in electronics and long-range telecommunication networks.

Video version (YouTube):

 

Audio Version:

 

Discussion Overview:

 

Installation of optical fiber and maintenance of optical fiber

We can use optical communication techniques such as phase multiplexing

There’s a race between using more colors and higher bitrates to increase data communication rates.

Indium doped fiber amplifiers can multiply multiple channels at different colors on the same optical PHY.

You can use up to 80 colors on a single fiber optic channel! 3:52

How is optical communication similar to RF? Optical communication is a lot like WiFi 4:07

Light color in optical fiber is the equivalent of carrier frequencies in RF

 

How do we increase the data rate in optical fiber?

There are many multiplexing methods such as multicore, wavelength division, and polarization 4:50

Practically, only two polarization modes can be used at once. The limiting factor is the separation technology on the receiver side. 6:20

But, this still doubles our bandwidth!

What about dark fiber? Dark fiber is the physical piece of optical fiber that is unused. 7:07

Using dark fiber on an existing optical fiber is the first step to increasing fiber optic bandwidth.

But wavelengths can also be added.

Optical C-band vs L-band 7:48

Optical C-band was the first long-distance band. It is now joined by the L-band.

Is there a difference between using different colors and different wavelengths?

Optical fibers are a light show for mosquitos! 8:30

 

How do we fix optical fibers? 10:36

For short distances, an OTDR or visual light fault detectors are often used by sending red light into a fiber and lights up when there’s a break in the fiber

 

Are there other ways to extend the amount of data we can push through a fiber? 11:35

Pulses per second can be increased, but we will eventually bleed into neighboring channels

Phase modulation is also used

PAM-4 comes into play with coding (putting multiple bits in a symbol)

And QAM which relies on both amplitude and phase modulation

PAM-4 test solutions

How do we visualize optical fibers?  14:05

We can use constellation diagrams which plot magnitude and phase

 

Do we plan for data error? 15:00

Forward error correction is used, but this redundancy involves significant overhead

 

QAM vs PAM

64 Gigabot (QAM-64) was the buzzword at OFC 2017 16:52

PAM is used for shorter links while QAM is used for longer links

 

How do we evaluate fiber? 18:02

We can calculate cost per managed bit and energy per managed bit

Energy consumption is a real concern 18:28

 

The race between copper and fiber 19:13

Fiber wins on long distance because of power consumption

But does fiber win on data rate?

Google Fiber should come to Colorado Springs…and Germany!

To compensate for the loss of the signal on the distance, you push more power in for transmitting and decrypting

Fibers attenuate the signal much less than copper does

But the problem comes when we have to translate the signal back into electrical on the receiving end

Is there a break-even point with fiber and copper? 22:15

 

Optical communication technology in the future

What speed are we at now and what’s the next technology? 23:05

600 G technology will be here eventually

We can expect 1.5 years between iterations in bandwidth. This is really slow in terms of today’s fast-paced technology.

We typically see 100 G speeds today

 

Predictions 26:00