New 110 GHz Oscilloscope – UXR Q&A #35

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

 

Some of the questions & comments

S K on YouTube: How long does it take to engineer something like this? With custom ASICs all over the place and what not…

Glitch on YouTube: Can you make a budget version of it for $99?

Steve Sousa on YouTube: But how do you test the test instrument?? It’s already so massively difficult to make this, how can you measure and qualify it’s gain, linearity etc?

TechNiqueBeatz on YouTube: About halfway through the video now.. what would the practical application(s) of an oscilloscope like this be?

Alberto Vaudagna on YouTube: Do you know what happen to the data after the dsp? It go to the CPU motherboard and processed by the CPU or the data is overlayed on the screen and the gui is runner’s by the CPU?

How does a piece of equipment like that get delivered? I just don’t think UPS or Fedex is going to cut it for million+ dollar prototype. It would be nice to see some higher magnification views of the front end.

Ulrich Frank:mNice sturdy-looking handles at the side of the instrument – to hold on to and keep you steady when you hear the price…

SAI Peregrinus: That price! It costs less than half the price of a condo in Brooklyn, NY! (Search on Zillow, sort by price high to low. Pg 20 has a few for $2.7M, several of which are 1 bedroom…)

RoGeorgeRoGeorge: Wow, speechless!

R Bhalakiya: THIS IS ALL VOODOO MAGIC

Maic Salazar Diagnostics: This is majestic!!

Sean Bosse: Holy poop. Bet it was hard keeping this quiet until the release.

jonka1: Looking at the front end it looks as if the clock signal paths are of different lengths. How is phase dealt with? Is it in this module or later in software?

cims: The Bugatti Veyron of scopes with a price to match, lol

One scope to rule them all…wow! Keyesight drops the proverbial mic with this one

Mike Oliver: That is a truly beautiful piece of equipment. It is more of a piece of art work than any other equipment I have ever seen.

Gyro on EEVBlog: It’s certainly a step change in just how bad a bad day at the office could really get!
TiN: I have another question, regarding the input. Are there any scopes that have waveguide input port, instead of very pricey precision 1.0mm/etc connectors?
Or in this target scope field, that’s not important as much, since owner would connect the input cable and never disconnect? Don’t see those to last many cable swaps in field, even 2.4mm is quite fragile.

User on EEVBlog: According to the specs, It looks like the 2 channel version he looked at “only” requires 1370 VA and can run off 120V.  The 4 channel version only works off 200-240V

The really interesting question: how do they calibrate that calibration probe.
They have to characterize the imperfections in it’s output to a significantly better accuracy than this scope can measure.  Unless there’s something new under the sun in calibration methodology?

Mikes Electric Stuff‏ @mikelectricstuf: Can I get it in beige?

Yaghiyah‏ @yaghiyah: Does it support Zone Triggering?

User on Twitter:

It’ll be a couple paychecks before I’m in the market, but I’d really be interested in some detail on the probes and signal acquisition techniques. Are folks just dropping a coax connector on the PCB as a test point? The test setup alone has to be a science in itself.

I’d also be interested in knowing if the visiting aliens that you guys mugged to get this scope design are alive and being well cared for.

Hi Daniel, just out of curiosity and within any limits of NDAs, can you go into how the design process goes for one of these bleeding-edge instruments? Mostly curious how much of the physical design, like the channels in the hybrid, are designed by a human versus designed parametrically and synthesized

Optical 101 – #9

How does optical communication work? We sit down with Stefan Loeffler to discuss the basics of optics and its uses for electrical engineering.

Optical communication 101 – learn about the basics of optics! Daniel Bogdanoff and Mike Hoffman interview Stefan Loeffler.

Video Version (YouTube):

Audio version:

Discussion overview:

Similarities between optical and electrical

Stefan was at OFC
What is optics? 1:21
What is optical communication? 1:30
There’s a sender and a receiver (optical telecommunication)
Usually we use a 9 um fiber optic cable, but sometimes we use lasers and air as a medium

The transmitter is typically a laser
LEDs don’t work for optical

Optical fiber alignment is challenging, and is often accomplished using robotics

How is optical different from electrical engineering?

Photodiodes act receivers, use a transimpedance amplifier. It is essentially “electrical in, electrical out” with optical in the middle.

Optical used to be binary, but now it’s QAM 64

Why do we have optical communication?
A need for long distance communication led to the use of optical.
Communication lines used to follow train tracks, and there were huts every 80 km. So, signals could be regenerated every 80 km.

In the 1990s, a new optical amplifier was introduced.

Optical amplifier test solutions

Signal reamplifcation vs. signal regeneration

There’s a .1 dB per km loss in modern fiber optic cable 11:20
This enables undersea fiber optic communication, which has to be very reliable

How does undersea communication get implemented?
Usually by consortium: I-ME-WE SEA-ME-WE

AT&T was originally a network provider

What is dark fiber (also known as dark fibre)?
Fiber is cheap, installation and right-of-way is expensive

What happens if fiber breaks?

Dark fiber can be used as a sensor by observing the change in its refractive index

Water in fiber optic line is bad, anchors often break fiber optic cable 17:30

Fiber optic cable can be made out of a lot of different things

Undersea fiber has to have some extra slack in the cable
Submarines are often used to inspect fiber optic cable

You can find breaks in the line using OTDR – “Optical time domain reflectometry”

A “distributed reflection” means a mostly linear loss. The slope of the reflection tells you the loss rate.

The refractive index in fiber optic cable is about 1.5

Latency and delay 23:00
The main issue is the data processing, not the data transmission

A lot of optical engineers started in RF engineering 24:00

Environmental factors influence the channel, these include temperature, pressure, and physical bends
Recently thunderstorms were found to have an effect on the fiber channel

Distributed fiber sensing is used drilling

Polarization in fiber, polarization multiplexing techniques
Currently, we’re using 194 THz, which gives 50 nm windows

Future challenges for optical 28:25
It’s cost driven. Laying fiber is expensive. And, when all dark fiber is being used, you have to increase bandwidth on existing fiber.

Shannon relation 30:00

Predictions 31:10

Watch the previous episode here!