IC Packaging – #37

Packaging engineers are the unsung heroes of the IC world. Packaging Expert Jesse Rebeck sits down and explores the complexities of IC packaging.

The unsung heroes of the IC world – packaging engineers!

The pictures I promised:

The UXR Amplifier Fanout Package:

UXR_Amplifier_FanOutPackage

Bert Signal Conditioning Hybrid Packaging:

BERT_SignalConditioning_HybridPackage

UXR Data Processor Flip Chip Packaging:

UXR_DataProcessor_FlipChipPackage

Space Technology – #36

Space requires new technologies. Much like the space race of the 1950s, engineers are feverishly working to gain a competitive advantage. Mark Lombardi sits down to explore rad hardening, thermal vacuum chambers, space mining, CubeSats, and battery technology.

Hosted by Daniel Bogdanoff and Mike Hoffman, EEs Talk Tech is a twice-monthly engineering podcast discussing tech trends and industry news from an electrical engineer’s perspective.

Space requires new technologies. Much like the space race of the 1950s, engineers are feverishly working to gain a competitive advantage. Mark Lombardi sits down to explore rad hardening, thermal vacuum chambers, space mining, CubeSats, and battery technology.

 

Mark Lombardi – 25 years at HP/Agilent/Keysight. He worked for RT logic for a few years, where he got into space.

2:00 – Your odds of survival getting to space are better than getting to the top of Everest.

2:30 – Space mining from the Asteroid belt has the potential to create the worlds first trillionaire.

3:20 – We need to establish manufacturing in space. For example, what if you manufactured satellites on the moon instead of on earth?

4:00 – The main driver is price-per-pound

6:10 – The Space Force – it sounds a little silly at first but is very reasonable when you take a closer look.

7:45 – How do you test objects bound for space?

8:30 – Space is transitioning from government-only to commercial. Businesses are starting to explore how to add value to society and make a profit from space.

9:15 – Phased arrays, reusable rockets, LEO satellites are all changing space technology.

10:00 – Low earth orbit satellites have much lower delay. Geosynchronous satellites have a 250 ms propagation delay.

This has interesting implications for 5G – that 250 ms latency is too long for 5G requirements. So, LEO satellites are what will be used.

12:00 – Using LEO satellites will be deployed in force instead of as singles, as mentioned in the Weather Cubesat podcast.

13:45 – Ghana launched their own satellite, which is a huge step. They eventually won’t be dependent on others for their space access. And, they can do specialized things for reasonable prices.

15:00 – Announcements – we haven’t podcasted in a long time, sorry! We are switching to 1x per month

16:45 – Radiation hardening for electronics, sometimes called electronics hardening. Historically, you had to plan for a long life in a satellite. Now, you don’t have to.

17:30 – It’s also hard to get a rad hardened cutting-edge technology.

18:00 – LEO satellites get less radiation, so it’s less of a problem. And, since they are cheaper, you can build in an expected mortality rate.

19:00 – You can also rev hardware faster, allowing you to use newer technology. Think about imagers, the technology has moved a long way in seven years.

19:55 – Space is cold. Space is a vacuum. So, to test our gear you have to reproduce that on earth. To do that, we use special chambers.

20:50 – Thermal vacuum chambers (T vac) are used to test space objects. Automotive parts are actually very resilient to temperature changes and can be leveraged into space designs.

21:30 – What happens to electronics in space? The vacuum is a bigger challenge than the temperature changes.

23:30 – To get more bandwidth, we have to increase frequency. This leads to attenuation in the air and in cables. Some designers are switching to waveguides.

25:00 – With modular test equipment, you could potentially have test gear that can survive in space.

27:00 – What is the current and projected size of the space industry?

28:10 – What batteries are used in space? What factors into battery decisions? – Lithium ion batteries work well in space, and are used when we can charge them with solar energy.

28:40 – Deep space exploration uses all sorts of obscure battery technology.

29:10 – Electronic propulsion

30:05 – Over 150V, things get interesting. The breakdown voltage is different in space than it is on earth. So, designers have to be very careful.

New 110 GHz Oscilloscope – UXR Q&A #35

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

Brig Asay, Melissa, and Daniel Bogdanoff sit down to answer the internet’s questions about the new 110 GHz UXR oscilloscope. How long did it take? What did it cost? Find out!

 

Some of the questions & comments

S K on YouTube: How long does it take to engineer something like this? With custom ASICs all over the place and what not…

Glitch on YouTube: Can you make a budget version of it for $99?

Steve Sousa on YouTube: But how do you test the test instrument?? It’s already so massively difficult to make this, how can you measure and qualify it’s gain, linearity etc?

TechNiqueBeatz on YouTube: About halfway through the video now.. what would the practical application(s) of an oscilloscope like this be?

Alberto Vaudagna on YouTube: Do you know what happen to the data after the dsp? It go to the CPU motherboard and processed by the CPU or the data is overlayed on the screen and the gui is runner’s by the CPU?

How does a piece of equipment like that get delivered? I just don’t think UPS or Fedex is going to cut it for million+ dollar prototype. It would be nice to see some higher magnification views of the front end.

Ulrich Frank:mNice sturdy-looking handles at the side of the instrument – to hold on to and keep you steady when you hear the price…

SAI Peregrinus: That price! It costs less than half the price of a condo in Brooklyn, NY! (Search on Zillow, sort by price high to low. Pg 20 has a few for $2.7M, several of which are 1 bedroom…)

RoGeorgeRoGeorge: Wow, speechless!

R Bhalakiya: THIS IS ALL VOODOO MAGIC

Maic Salazar Diagnostics: This is majestic!!

Sean Bosse: Holy poop. Bet it was hard keeping this quiet until the release.

jonka1: Looking at the front end it looks as if the clock signal paths are of different lengths. How is phase dealt with? Is it in this module or later in software?

cims: The Bugatti Veyron of scopes with a price to match, lol

One scope to rule them all…wow! Keyesight drops the proverbial mic with this one

Mike Oliver: That is a truly beautiful piece of equipment. It is more of a piece of art work than any other equipment I have ever seen.

Gyro on EEVBlog: It’s certainly a step change in just how bad a bad day at the office could really get!
TiN: I have another question, regarding the input. Are there any scopes that have waveguide input port, instead of very pricey precision 1.0mm/etc connectors?
Or in this target scope field, that’s not important as much, since owner would connect the input cable and never disconnect? Don’t see those to last many cable swaps in field, even 2.4mm is quite fragile.

User on EEVBlog: According to the specs, It looks like the 2 channel version he looked at “only” requires 1370 VA and can run off 120V.  The 4 channel version only works off 200-240V

The really interesting question: how do they calibrate that calibration probe.
They have to characterize the imperfections in it’s output to a significantly better accuracy than this scope can measure.  Unless there’s something new under the sun in calibration methodology?

Mikes Electric Stuff‏ @mikelectricstuf: Can I get it in beige?

Yaghiyah‏ @yaghiyah: Does it support Zone Triggering?

User on Twitter:

It’ll be a couple paychecks before I’m in the market, but I’d really be interested in some detail on the probes and signal acquisition techniques. Are folks just dropping a coax connector on the PCB as a test point? The test setup alone has to be a science in itself.

I’d also be interested in knowing if the visiting aliens that you guys mugged to get this scope design are alive and being well cared for.

Hi Daniel, just out of curiosity and within any limits of NDAs, can you go into how the design process goes for one of these bleeding-edge instruments? Mostly curious how much of the physical design, like the channels in the hybrid, are designed by a human versus designed parametrically and synthesized

One Protocol to Rule Them All!? – #34

The USB Type-C brings a lot of protocols into one physical connector, but is there room for one protocol to handle all our IO needs? Mike Hoffman and Daniel Bogdanoff sit down with high speed digital communications expert Jit Lim to find out.

USB Type-C brings a lot of protocols into one physical connector, but is there room for one protocol to handle all our IO needs? Mike Hoffman and Daniel Bogdanoff sit down with high speed digital communications expert Jit Lim to find out.

 

0:00 This is Jit’s 3rd podcast of the series

1:00 We already have one connector to rule them all with USB Type-C, but it’s just a connector. Will we ever have one specification to rule them all?

2:00 Prior to USB Type-C, each protocol required it’s own connector. With USB TYpe-C, you can run multiple protocols over the same physical connector

3:00 This would make everything more simple for engineers, they would only need to test and characterize one technology.

3:30 Jit proposes a “Type-C I/O”

4:00 Thunderbolt already allows displayport to tunnel through it

4:30 Thunderbolt already has a combination of capabilities. It has a display mode – you can buy a Thunderbolt display. This means you can run data and display using the same technology

6:30 There’s a notion of a muxed signals

7:00 The PHY speed is the most important. Thunderbolt is running 20 Gb/s

7:15 What would the physical connection look like? Will the existing USB Type-C interface work? Currently we already see 80 Gb/s ports (4 lanes) in existing consumer PCs

9:20 Daniel hates charging his phone without fast charging

9:40 The USB protocol is for data transfer, but is there going to be a future USB dispaly protocol? There are already some audio and video modes in current USB, like a PC headset

11:30 Why are we changing? The vision is to plug it in and have it “just work”

12:00 Today, standards groups are quite separate. They each have their own ecosystems that they are comfortable in. So, this is a big challenge for getting to a single spec

13:15 Performance capabilities, like cable loss, is also a concern and challenge

14:00 For a tech like this were to exist, will the groups have to merge? Or, will someone just come out with a spec that obsoletes all of the others?

15:30 Everyone has a cable hoard. Daniel’s is a drawer, Mike’s is a shoebox

16:30 You still have to be aware of the USB Type-C cables that you buy. There’s room for improvement

17:30 Mike wants a world of only USB Type-C connectors and 3.5mm headphone jacks

18:30 From a test and measurement perspective, it’s very attractive to have a single protocol. You’d only have to test at one rate, one time

19:30 Stupid questions

USB 3.2 + Why You Only Have USB Ports On One Side of Your Laptop – #32

USB 3.2 DOUBLES the data transfer capabilities of previous USB specifications, and could mean the end of having USB ports on just one side of your computer. Find out more in today’s electrical engineering podcast with Jit Lim, Daniel Bogdanoff, and Mike Hoffman.

USB 3.2 DOUBLES the data transfer capabilities of previous USB specifications, and could mean the end of having USB ports on just one side of your computer. Find out more in today’s electrical engineering podcast with Jit Lim, Daniel Bogdanoff, and Mike Hoffman.

 

1:00
Jit is the USB and Thunderbolt lead for Keysight.

1:30
USB 3.2 specifications were released Fall 2017 and released two main capabilities.

USB 3.2 doubles the performance of  USB 3.1. You can now run 10Gb/s x2. It uses both sides of the CC connector.

In the x2 mode, both sides of the connectors are used instead of just one.

4:00
The other new part of USB 3.2 is that it adds the ability to have the USB silicon farther away from the port. It achieves this using retimers, which makes up for the lossy transmission channel.

5:00
Why laptops only have USB ports on one side! The USB silicon has to be close to the connector.

6:30
If the silicon is 5 or 6 inches away from the connector, it will fail the compliance tests. That’s why we need retimers.

7:15
USB is very good at maintaining backwards compatibility

The USB 3.0 spec and the USB 3.1 spec no longer exist. It’s only USB 3.2.

The USB 3.2 specification includes the 3.0 and the 3.1 specs as part of them, and acts as a special mode.

9:00
From a protocol layer and a PHY layer, nothing much has changed. It simply adds communication abilities.

9:55
Who is driving the USB spec? There’s a lot of demand! USB Type C is very popular for VR and AR.

12:00
There’s no benefit to using legacy devices with modern USB 3.2 ports.

13:45
There’s a newly released variant of USB Type C that does not have USB 2.0 support. It repurposes the USB 2 pins. It won’t be called USB, but it’ll essentially be the same thing. It’s used for a new headset.

15:20
USB Type C is hugely popular for VR and AR applications. You can send data, video feeds, and power.

17:00
Richie’s Vive has an audio cable, a power cable, and an HDMI cable. The new version, though, has a USB Type-C that handles some of this.

18:00
USB 3.2 will be able to put a retimer on a cable as well. You can put one at each end.

What is a retimer? A retimer is used when a signal traverses a lossy board or transmission line. A retimer acquires the signal, recovers it, and retransmits it.

It’s a type of repeater. Repeaters can be either redrivers or repeaters. A redriver just re-amplifies a signal, including any noise. A retimer does a full data recovery and re-transmission.

21:20
Stupid Questions:
What is your favorite alt mode, and why?
If you could rename Type-C to anything, what would you call it?